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Camera traps have become an important research tool for both conservation biologists

and wildlife managers. Recent advances in spatially explicit capture-recapture (SECR)

methods have increasingly put camera traps at the forefront of population monitoring

programs. These methods allow for benchmark analysis of species density without

the need for invasive fieldwork techniques. We conducted a review of SECR studies

using camera traps to summarize the current focus of these investigations, as well

as provide recommendations for future studies and identify areas in need of future

investigation. Our analysis shows a strong bias in species preference, with a large

proportion of studies focusing on large felids, many of which provide the only baseline

estimates of population density for these species. Furthermore, we found that a majority

of studies produced density estimates that may not be precise enough for long-term

population monitoring. We recommend simulation and power analysis be conducted

before initiating any particular study design and provide examples using readily available

software. Furthermore, we show that precision can be increased by including a larger

study area that will subsequently increase the number of individuals photo-captured.

As many current studies lack the resources or manpower to accomplish such an

increase in effort, we recommend that researchers incorporate new technologies such

as machine-learning, web-based data entry, and online deployment management into

their study design. We also cautiously recommend the potential of citizen science to

help address these study design concerns. In addition, modifications in SECR model

development to include species that have only a subset of individuals available for

individual identification (often called mark-resight models), can extend the process of

explicit density estimation through camera trapping to species not individually identifiable.
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density estimation
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INTRODUCTION

Camera Traps and Benchmarking
Biodiversity
Human-induced changes to both terrestrial and marine
ecosystems are intensifying, especially in areas of the world
with historically high levels of biodiversity (Venter et al., 2016).
Human activities have a direct effect on biodiversity, altering
ecosystems around the globe (Cardinale et al., 2006; Estes et al.,
2011; Hooper et al., 2012). During this period of rapid change,
and in order to better understand the effects of human activity
on biodiversity, it has become increasingly important to provide
baseline measurements of species distributions and population
sizes, especially for rare, elusive, and difficult-to-monitor species
like carnivores, which play particularly important roles in
regulating ecosystems (Beschta and Ripple, 2009; Laundre et al.,
2010; Ripple et al., 2014). Providing these benchmark analyses,
and establishing the methodology and analysis framework to
compare changes over time, is essential to understanding and
quantifying the ways in which these species are both affected by
rapid change and how they, in turn, affect human well-being.

Camera traps have been used in animal ecology studies
for decades, and are particularly suitable for studying large
carnivores, which can be difficult to study with other methods
(Griffiths and Van Schaik, 1993; Rowcliffe and Carbone,
2008; Trolliet et al., 2014; Burton et al., 2015). Cameras
provide researchers with a non-invasive survey tool to sample
wildlife communities and usually require less intensive labor
commitment than standard trapping and marking techniques
(Meek et al., 2014). Consequently, camera traps have become
powerful research tools for scientists and wildlife managers
investigating a wide variety of ecological questions, management
situations, and conservation strategies (Karanth and Nichols,
1998; and Glen and Dickman, 2003; Hirakawa, 2008; O’Connell
et al., 2011; Meek et al., 2014).

Measuring Biodiversity: Density Estimation
In order to measure how species respond to rapid change, and
to establish proper avenues for comparative studies, researchers
must first establish a reference or baseline population size.
In biodiversity studies, density estimation is often considered
the gold-standard of population assessment and for species
conservation, wildlife management planning, and long-term
population monitoring (O’Connell et al., 2011; Tobler and
Powell, 2013; Royle et al., 2014). Wildlife density has long
been estimated through capture-recapture methods (Otis et al.,
1978). Karanth (1995) and Karanth andNichols (1998) pioneered
the use of camera traps in a photographic capture-recapture
framework to estimate population size of tigers Panthera tigris
in Nagarhole, India. The authors used camera trap images,
which come with an accompanying GPS coordinate (and date
and time stamp), as individual “captures.” They then used the
photographs from these individual captures to build a dataset
of multiple individual tigers. From there, they could create
separate capture histories for each one. Since this work, multiple
independent investigations have adopted camera traps and this
analysis framework to estimate the densities of tigers in other
areas of the world (O’Brien et al., 2003; Linkie et al., 2006;

Harihar et al., 2009; Gopal et al., 2011), as well other individually
identifiable animals (Kelly et al., 2008; Paviolo et al., 2008).

Many of these early investigations relied on closed model
capture-recapture methods (Otis et al., 1978; White et al., 1982).
This method requires compiling individual-specific capture
histories across a defined study area where the boundaries of
an individual animal’s movement may not be well-known. The
detection histories contain information about individual capture
probability, and can thus be used for estimating population
abundance. However, these models provide little information
on the movement patterns of each individual, as well as the
spatial distribution of the traps themselves. Therefore, under this
framework, density is estimated according to an arbitrarily set
area, usually defined as the camera trap polygon plus a buffer
with radius equal to either the maximum distance moved by
an individual across the trap array or half the distance moved
(O’Connell et al., 2011). As density requires both an abundance
and an area, arbitrary designation of area is an obvious hindrance
to closed model capture-recapture methods. Consequently, this
method is often considered to measure density implicitly (Royle
et al., 2014). That is, density is estimated without explicitly
measuring all of its elements. The population size is functionally
unrelated to an explicitly monitored area, which can make it
impossible to compare across studies or even different models
(Royle et al., 2014). Furthermore, research has shown thismethod
to consistently overestimate density by underestimating the
distances moved by individual animals (Obbard et al., 2010; Noss
et al., 2012; Pesenti and Zimmermann, 2013).

Spatially Explicit Capture-Recapture
Spatially explicit capture-recapture (SECR) density estimation
was developed independently by Borchers and Efford (2008) and
Royle and Young (2008) (see also Efford, 2004, 2011; Efford et al.,
2009; Royle et al., 2009). What separates SECR density estimation
from closed capture-recapture models is the incorporation of an
explicit spatial component to each individual’s detection history,
as well as a defined state-space over which density is estimated
(Efford and Fewster, 2013; Royle et al., 2014). Therefore, SECR
analysis represents an explicit way of measuring density (i.e.,
both components of density are estimated without ad hoc
calculations). However, because of the additional parameters to
estimate, SECR models can be more data hungry than their
implicit counterparts (Royle et al., 2014).

A detailed breakdown of SECR analysis is beyond the scope
of this paper. Efford et al. (2009) offer a thorough introduction
and explanation of SECR analysis throughMaximumLikelihood-
based methods, and Royle et al. (2014) provide a thorough
introduction and explanation of SECR analysis through Bayesian
techniques incorporating data augmentation. Here, instead, we
provide a brief summary based on the work of Royle and Young
(2008) and Borchers and Efford (2008).

SECR models are hierarchical, where the full model is
described by multiple component models (Royle and Dorazio,
2008). The first of these components describes the distribution of
activity centers s, or home range centers, of individual animals.
In this characterization, si represents the geographic point where
individual i’s movement is centered (the movement around the
point si is then described according to a specific probability
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function), and si; i = 1, 2,. . . , N represents the activity centers
of every individual within a defined state-space S, the region
over which density is estimated (Royle and Young, 2008). This
model is a spatial point process, capable of measuring density
as either constant across the state-space or with spatial variation
(Efford et al., 2009; Royle et al., 2014). S is typically described by
specifying coordinates of a polygon that is substantially larger
than the area sampled, allowing some individuals to have si
outside of the sampled area. As mentioned above, individuals are
assumed tomove around the state-space randomly as specified by
some probability distribution. Finally, the sum of activity centers,
N, over the state-space S, specified u, represents the estimated
population density.

Another component, the observation model, describes y,
or how the observed data occur based on the locations of
N individuals (Efford et al., 2009; Royle et al., 2014), as it
is assumed that individuals are sampled imperfectly due to
detection probability being <1. The observed data are binary
observations during a specific sample that state whether an
individual was captured or not (Royle and Young, 2008). These
observations are used to create encounter histories for each
individual. In addition, each encounter comes with a pair of
coordinates that specify where each encounter occurred. These
encounters are defined by at least two parameters, p and σ ,
which describe the probability of capturing or detecting an
individual at a given location by using the distance between each
individual’s activity center and a given encounter location. In this
formulation, when individuals are marked, pij is the probability
of capturing individual i at trap location j, and σ is the spatial
scale parameter that defines how capture probability declines
with distance (Efford et al., 2009; Royle et al., 2014).

The most basic SECR models come with the following major
assumptions: (1) within the population of interest, and during the
period of study, there exists both demographic and geographic
closure; (2) individual activity centers are randomly distributed
and do not change; (3) the probability of detection at a given
location is a function of distance to an individual’s activity center;
and (4) there is independence in individual encounters among
individuals and within the same individual.

The first assumption means that basic SECR models assume
no exit or entry into the population through either recruitment
or mortality or permanent emigration or immigration from the
area of study. However, the model does allow for “temporary”
variability to encounter around the state-space (Royle et al.,
2014). Violations of closure can result in detection probability
estimates that are too low or the effective trap area being
considered too small, resulting in positive bias in resulting
density estimates (Dillon and Kelly, 2008; Obbard et al.,
2010). Typically, practitioners are encouraged to either (a)
keep their survey period as short as possible or (b) use an
open population model (e.g., Gardner et al., 2010a; Ergon and
Gardner, 2014; Schaub and Royle, 2014) to avoid violating this
assumption. The second assumption deals with the distribution
of individual activity centers across the state space. This is often
referred to as the “uniformity assumption,” (Royle et al., 2014)
modeled as,

si∼Uniform(S)

This creates what is known as a homogenous point process
model; however, inclusion of site-specific covariates can make
it possible to estimate density as a function of state-space
heterogeneity (Royle et al., 2018). Accompanying this assumption
is that individual home range centers are spatially stationary for
the duration of study. However, this assumption may be relaxed
by modeling si with some type of latent movement model. Thus,
the activity centers of all or some of the individuals within a
population are allowed to drift (Royle et al., 2016).

The third assumption states that each animal has an activity
center and the probability of capture decreases with distance to
that activity center. Typically, a half-normal detection function
is applied to describe how detection probability decreases
with distance, but a variety of functions are available. In this
formulation, the detection function is described by the detection
probability and the scale parameter, which denote the probability
of detection when the distance between an individual and their
activity center is 0 and how that probability declines in response
to distance, respectively. Themost basicmodels assume that these
parameters do not change across individuals, but this assumption
can be relaxed to vary across time, individuals, and covariates
(Royle et al., 2018). Finally, the assumption of independence of
encounters states that the encounter of one individual does not
affect the encounter of another individual at the same trap, and
encounter of an individual at one trap location is independent of
encounter at any other trap location. It is natural to think that
species may have a behavioral response to certain areas, making
themmore or less likely to visit specific trapping locations. Recent
model developments allow for this behavioral response to be
explicitly accounted for (Gardner et al., 2010b; Royle et al., 2011).

Camera Traps and SECR Analysis
Camera trapping lends itself well to measuring density through
SECR analysis. SECR analysis requires marking a sample of
individuals and monitoring their presence across multiple
surveys and study sites (Borchers and Efford, 2008; Efford et al.,
2009; Royle et al., 2014). Traditionally, monitoring requires
setting up live-trapping stations, using natural marks or marking
individuals caught in each trap, and repeating the process over a
given time-frame. This results in multiple visits (usually daily) to
each trap station, individual processing of animals caught in the
traps, and consistent maintenance of traps to ensure that each
is capable of capturing animals, resulting in a time and effort-
intensive process that hinders the number of traps that can be
deployed during a particular investigation (Jimenez et al., 2017;
Loock et al., 2018; Whittington et al., 2018; Petersen et al., 2019).
This is problematic for species with low detection or capture
rates due to natural rarity or large individual home ranges. To
compensate, researchers are required to increase the duration
of time each trap is active during a season, which can lead to
violations of the closure assumption.

However, camera traps are non-invasive, remote sensing
devices that can monitor animal populations over a wide-
geographic area (Kelly et al., 2008; Linden et al., 2017;
Luskin et al., 2017). They are relatively cost and time-effective
monitoring tools, requiring no intensive and individually-
invasive capturing techniques, and they can be paired with
other methodological approaches that bolster the predictive
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power of population monitoring investigations (O’Connell et al.,
2006; Lyra-Jorge et al., 2008; De Bondi et al., 2010; Roberts,
2011; Welbourne et al., 2016). Camera surveys require little
maintenance once initially setup, and they offer the unique ability
for researchers to mark individual animals without having to
maintain the traps they were caught in or process the individuals
captured. Furthermore, since SECR analysis requires that density
is estimated over an explicitly determined state-space, and that
a state-space is typically defined as the polygon surrounding
the outermost traps of a particular array (aka the minimum
convex trap polygon), using camera traps instead of other
trapping methods allows researchers to explicitly adjust the size
of their study area. Finally, the ease of setup and relatively low
maintenance requirements for camera traps allows researchers
to establish a higher density of traps within their camera array
compared to more traditional methods, with more than one trap
within the average home range size of the species studied, another
requirement of SECR analysis (Borchers and Efford, 2008; Royle
et al., 2009, 2018).

In this review, we aim to explain the current extent of camera
trap SECR analysis, identifying whether benchmark density
estimates have been precise enough to monitor change over
time, especially for species where no other estimates exist. Our
goals were to (1) summarize the current efforts of SECR analysis
through camera trap surveys and (2) analyze study design
criteria to identify important predictors of density precision
and suggest recommendations to improve density precision in
future studies. Our review provides an accurate picture of the
current direction of the science. We document the publication
outlets, species studied, and geographic extent of these efforts.
As a guide for future research, we highlight the analysis software
used, the study designs adopted, and both the amount of effort
and number of detections recorded. Finally, we report on the
study design factors that lead to increases in density estimation
precision and how incorporation of new analysis techniques,
online technologies, and citizen science may offer ways to
increase these factors for future investigators, as well as pave the
way for new developments.

MATERIALS AND METHODS

Literature Review
Our literature review took place between 24 April and 21
October 2019. We searched the Web of ScienceTM for papers
using the following title and topic search terms: “spatial
capture-recapture” AND “spatially explicit capture-recapture”
AND “spatial mark-recapture” AND “spatially explicit mark-
recapture” AND “spatial mark-resight” AND “spatially explicit
mark-resight” AND “spatially explicit density estimation.” We
reviewed the resulting dataset of 309 papers and included only
those that used camera traps. The resultant dataset included 88
scientific articles. We then expanded this dataset by searching
through all studies citing Royle et al. (2014), which resulted in
an additional 7 studies. The final dataset included 95 papers
(Supplementary Table 1).

Categorical variables were extracted from each study. We
recorded the title, author(s), journal, year, pagination, class and

species studied, and continent and country of focus for each
study. If more than one species was included in a single study,
a separate record was produced for each. This resulted in a
dataset with 110 species-specific records. Each study’s objective
was classified as either single-species, two-species, or multi-
species density estimation. Spatially-explicit capture-recapture
(SECR) analysis is typically done using freely available data
analysis software and can be implemented in either a maximum
likelihood or Bayesian framework, so we recorded the method of
analysis as either MLE (for maximum likelihood), Bayesian, or
both, and the statistical program used to implement the analysis
was also included in the database. We recorded whether or
not each study used site-specific covariates within their analysis
framework. For studies that paired non-covariate spatially
explicit density estimation with diet, movement, or occupancy
analyses that included site-specific covariates (n = 8), the study
was classified as using covariates and the discrepancy was noted
on a separate column in the dataset. We recorded any methods
(simulations, occupancy analysis, live trapping, etc.), besides
spatially explicit density estimation through camera trapping,
implemented during the course of each study. Furthermore, if a
study made any comparisons between SECR and another density
estimation framework (n = 23), the specific models compared
and the results of these comparisons were recorded. Finally, we
recorded if each study included baited camera trap stations and
whether or not community engagement or citizen science was
implemented during any stage of the project.

We extracted a number of numerical variables from each
study. The number of camera stations was recorded as the average
number of stations implemented per year of study. We recorded
the length of each study in years. We included, when recorded,
the minimum convex polygon of the camera station array. If
this camera polygon was not reported in the manuscript (n =

5), the state-space of the study was used instead (see section
Measuring Biodiversity: Density Estimation above). We recorded
the average camera spacing in meters. When the average spacing
was not explicitly reported, we recorded the average of the
reported camera spacing range (n = 13), the minimum distance
between stations (n = 1), or the maximum distance between
stations (n = 1). The number of trap days was recorded as the
total accumulated effort for all camera stations across all years
of survey. This total was then averaged across years for analysis.
The total number of photo-captured target species was recorded,
as was the total number of individuals tracked throughout the
study. The scaling parameter, σ, was recorded for each study
as the average across years per species using either the author-
specified top model or the author-reported model average. If the
best model was not specified (n = 9), σ was extracted as the
average across all models reported.Whenmore than one area was
surveyed during a particular study and no average was recorded
(n = 7), the scaling parameter was recorded as the weighted
average of estimates based on the size of each area’s assessed state-
space. Furthermore, if the scaling parameter was reported to vary
based on sex (n= 8), the estimate was averaged using an assumed
1:1 sex ratio (n = 7) or the specified sex ratio provided (n =

1). Density was recorded as the number of individuals reported
per 100 km2 on a per species basis. Estimates were averaged
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FIGURE 1 | Camera trap SECR study spatial distribution and species focus. (A) Global spatial distribution of camera trap SECR studies by country. (B) Number of

studies focused on the top 10 focal species. The top 10 species listed accounted for 61% of all SECR camera trap studies. Most (75%) SECR camera trap studies

focused on felids.

across year using either the top model reported or the author-
reported model average. As with the scaling parameter, when the
best model was not specified (n = 9), density was extracted as
the average across all models reported. When more than one
area was surveyed during a particular study and no average
was recorded (n = 7), density was recorded as the weighted
average of estimates based on the size of each area’s assessed
state-space. One study did not report the specific state-space
of each area surveyed, so the density estimate for this study
was calculated without area-specific weights. Lastly, to assess
the precision of density estimates, the coefficient of variation
(CV) was calculated on a per species basis across studies. When
the standard deviation of the maximum likelihood estimator or
the posterior standard deviation of density were not explicitly
reported, the standard error was used to calculate CV (n = 12).
One study provided only a 95% confidence interval, and the
standard deviation for this study was calculated as the range of
the confidence interval divided by 3.92 (assuming a normally
distributed density estimate).

Data Analysis
In an effort to identify important study design parameters
for increases in density precision, we modeled each study’s
coefficient of variation against study design parameters. However,
all predictor variables were correlated with at least one
other variable (Pearson’s r > 0.5). Therefore, we conducted
Principal Component Analysis (PCA) on study design factors
and modeled density precision as a function of the first
three principal components (PC1, PC2, and PC3), which
collectively accounted for 72.6% of the variation in study
design factors. Since each predictor was on a different
scale, predictor variables were standardized to have a mean
= 0 and a standard deviation = 1 before running the
PCA. We then used PC1, PC2, and PC3 as covariates in
modeling density precision to study design components using a

Gaussian linear model. We determined significant associations
between precision and principal components at α = 0.05.
Predictors included in the PCA were: density, target captures,
individuals monitored, camera stations, camera days, and
study area.

RESULTS

Dataset Summary
SECR analysis through camera trapping has focused on multiple
species across a wide geographic range. The results from our
dataset were published in 37 different journals. Five journals
accounted for 42.1% (n = 40) of publications (PLoS One =

13, Oryx = 12, Biological Conservation = 7, Ecology and
Evolution = 4, and Nature = 4). Publication rate has steadily
increased since 2010 (the earliest publication year included in
our dataset), with 67.3% (n = 64) published between 2015 and
2019 (Supplementary Table 1). All studies focused onmammals.
Of the 110 species density estimates, 60.9% (n = 67) were of 10
different species: leopard (Panthera pardus)= 17, tiger (Panthera
tigris)= 14, jaguar (Panthera once)= 8, clouded leopard (Neofelis
nebulosi) and (Neofelis diardi) = 7, cougar (Puma concolor) =
5, ocelot (Leopardus pardalis) = 4, domestic cat (Felis catus) =
3, leopard cat (Prionailurus bengalensis) = 3, red fox (Vulpes
vulpes)= 3, serval (Leptailurus serval)= 3. All other species were
included in fewer than three occasions (Supplementary Table 1,
Figure 1). 90.9% (n = 100) of estimates were of carnivores, and
of those 82% (n = 82) were of felids. 91.6% of studies focused on
only one species (n= 87), 5.3% on two species (n= 5), and 3.1%
on more than two species (n = 3). SECR studies using camera
traps were conducted on six continents, with Asia and South
America representing 58.9% (Asia = 38, South America = 18)
of all studies (Supplementary Table 1, Figure 1).

SECR models incorporated both maximum likelihood and
Bayesian analysis methodologies. Researchers estimated density
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using exclusively maximum likelihood estimation 46.3% (n =

44) of the time, with 72.7% (n = 32) of these studies using the
R package secr (Efford, 2010) for analysis; Bayesian inference
was used exclusively in 35.8% (n = 34) of studies, where the
program SPACECAP (Gopalaswamy et al., 2012) was used for
analysis in 40.6% (n = 13) of these studies; and both methods
were incorporated in the remaining 17.9% (n = 17) of studies,
with secr or SPACECAP used in 88.2% (n= 15) of these studies.

Camera trapping methodology varied in both spatial scale and
temporal extent, resulting in highly variable numbers of target
captures and individuals monitored. Most studies lasted for 1
year or less (71.6%, n = 68, mean = 1.9), and a median of
57.5 camera stations were deployed per study per year (mean =

100.1, min = 12, max = 849). Surveys lasted for a median of
3,124 camera-days per year (mean = 7,762, min = 478, max =

114,854). The minimum convex camera trap polygons covered
a median area of 306 km2, with large-scale, multi-year studies
having a major effect on the mean (mean = 2,646, min = 4,
max= 70,096). Camera stations were placed, on average, 1,962m
apart (median = 2,000, min = 100, max = 8,740), and bait
was used in 24.2% (n = 23) of studies. SECR studies recorded
a median of 129.5 detections of their target species (mean =

340.1, min = 21, max = 3,163) and resulted in a median of
27 individual animals tracked (mean = 60.8, min = 4, max =

1,240). The median scaling parameter varied across species and
dietary preferences (Supplementary Table 2). Density was lowest
for large carnivores and varied across species and geographic
locations (Supplementary Table 2).

Camera trapping studies deployed for SECR density
estimation incorporated a number of supplemental
methodologies and compared the effectiveness across these
methods, as well as across data analysis approaches and
modeling schemes. Twenty-two (23.2%) studies incorporated
site-specific covariates into their analysis. As noted in section
2.1, 36.4% (n = 8) of these studies used the information from
site-specific covariates in analysis separate of density estimation
through SECR analysis. Slightly under half of studies (46.3%, n=
44) incorporated methodologies in addition to camera trapping.
Of these methodologies, GPS tracking, telemetry, and live
trapping were used most frequently (27.3%, n = 12), followed
by simulations (22.7%, n = 10). Nineteen studies (20.0%)
compared the results of SECR analysis with closed-population
capture-recapture analysis (n = 16), Random Encounter Model
analysis (n = 1), distance sampling analysis (n = 1), and
Royle-Nichols occupancy analysis (n= 1). Authors self-reported
that SECR analysis either outperformed closed-population
capture-recapture or they recommended SECR analysis 93.8%
of the time (n = 15). One study self-reported that closed-
population capture-recapture analysis outperformed SECR
analysis. Twenty-six (27.3%) studies surveyed across multiple
years or seasons.

Density Precision Predictors
The precision of density estimates, as measured through the
coefficient of variation (CV), was reported or extracted as
explained in section 2.1 for 90 species-specific density estimates.
The median CV was 30% (mean = 31.1%). 75.6% (n = 68) of

FIGURE 2 | Study design characteristics predicting increases in density

precision. Density precision increased with increasing values of PC2

(describing axes of increasing density and increasing individuals monitored).

Data points are species-specific values of the Coefficient of Variation. Larger

values mean lower precision. Blue line and shaded area represent the slope

and 95% Confidence Intervals from our linear model. Dashed gray line

represents the mean Coefficient of Variation in our review.

studies reported a CV of ≤40%, but only 21% (n= 19) of studies
reported a CV ≤20%.

The first three principle components of our PCA, which
accounted for 72.6% of the variation in study design
characteristics, described axes of increasing camera stations
and camera days (PC1), increasing density and individuals
monitored (PC2), and increasing density and decreasing
individuals monitored (PC3; Supplementary Tables 3, 4).
Density precision did not differ significantly across PC1 and PC3
(p = 0.131 and p = 0.919, respectively; Supplementary Table 5).
However, density precision increased significantly with higher
values of PC2 (increases in density and individuals captured; p=
0.038; Figure 2).

DISCUSSION

In this review, we summarized the current publication extent,
geographic coverage, and species focus; study design specifics;
and available analysis pipelines of SECR camera trap studies. Our
review highlights the flexibility of SECR analysis through camera
trapping, which makes this methodology a tool for providing
benchmark analysis of previously understudied species. Our
review also sheds light on the current geographic and species
bias toward areas with rare, elusive, and individually-identifiable
species, particularly large felids. We also found that many studies
produced relatively imprecise density estimates (see below for
details), and that precision could be increased with increases in
the number of individuals captured, which can be accomplished
with a larger study area.

Benchmarking Rare and Elusive Species
Our review highlights the importance of camera trapping for
studying rare, elusive, and human-intolerant large carnivores
(Ripple et al., 2014). These are species that are both exceptionally
important to ecosystems throughout the world and difficult to
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study through other means. For many of the species in our
review, the density estimates calculated were the first reported
population estimates for them, highlighting the ability of camera
traps to monitor previously understudied species, providing
benchmark estimates that can be compared over space and time.
As the world continues to change at an increasingly rapid rate,
benchmarking and archiving density estimates for these species
will be critical for tracking the effects of rapid global change.

SECR density estimation through camera trapping is currently
focused on rare, elusive, large-ranging, and individually
identifiable carnivores, specifically large felids, and this
methodology represents one of the best ways to study these
species. More than a third of all studies included in this review
focused on one of three species: leopard, tiger, and jaguar (35.5%,
n= 39). This explains the subsequent bias in geographic focus of
camera trap SECR studies (Results section; Figure 1). Focusing
on species that are capable of individual identification through
photographic analysis alone is the obvious reason for this bias,
as it represents the simplest avenue to robust density estimation
without the need to employ more-intensive methodology (e.g.,
live trapping; scat, environmental, and/or hair sampling for DNA
analysis, etc.). Large felids tend to be wide-ranging, naturally
rare, and heavily affected by human influence (Seidensticker
and McDougal, 1993; Turner, 1997). Many of these species
are currently threatened or endangered with extinction, so
information about their population densities and trends through
space and time, especially in relation to human influence and
climatic change, is needed for their continued conservation
(Ripple et al., 2014). Since these species require large areas
of undisturbed habitat, they tend to be excellent indicators of
general ecosystem health and conservation of these umbrellas
species is thought to affect the conservation of other species at
lower trophic levels (Dalerum et al., 2008a,b; Estes et al., 2011).

Addressing Imprecise Density Estimates
Although the goal of many studies in this review was to
assess the current population size of a particular species
and/or lay the framework for a long-term monitoring project,
multiple density estimates from studies included in this review
may not be precise enough to monitor population trends
through time. The mean reported or derived coefficient of
variation (CV) was relatively high (31.1 %). In fact, less
than a quarter of studies reported high precision in their
density estimates (CV ≤20%). Conducting a power analysis
before implementing a specific study protocol can reduce “. . .
[wasting] time and effort on a program that is unlikely to
yield useful information” (Gerrodette, 1987). This power analysis
can be conducted for multiple fieldwork scenarios using the
readily available software TRENDS and the R package emon
(Gerrodette, 1993; Barry and Maxwell, 2017). For example,
using emon and the average density and standard deviation
of tigers in our dataset (CV = 0.31), assuming a normal
distribution for random values and that density is measured
twice per year, the likelihood of detecting a 50% linear decline
in tiger density over 10 years is only 32.7%. This likelihood
increases to 68.0% with a CV = 0.20 and to 89.2% with a
CV = 0.15. This simple exercise shows that a majority of

camera trap monitoring programs designed around species
where precise density estimates are needed to assess population
change through time may be inadequate. Furthermore, pairing
simulation with SECR density estimation through camera
trapping has great potential. Only 10.5 % (n = 10) of studies
performed any type of simulation before implementing their
field protocol. Conducting simulations before implementing field
protocol can help elucidate the effects particular study designs
could have on density estimation, and recent developments
in SECR simulation and design (see Efford, 2019a,b; Efford
and Boulanger, 2019) make it relatively straightforward to
evaluate study designs using prior information. Given that the
majority of studies were conducted on species where prior
information on home range size and density were available
(over 60% of studies were conducted on only 10 species),
including this information into simulation models could help
structure studies where a certain measure of precision is needed
to monitor population trends. For example, Efford (2019a)
designed the R package secrdesign and the accompanying
web-based application “SECRDESIGNAPP” (Efford, 2019b) for
researchers of all levels of statistical proficiency. Using the
average study design characteristics for tiger SECR studies in this
review (Supplementary Table 2), as well as the accompanying
average density in the above power analysis, assuming a grid-
based design with a half-normal detection function, Poisson
distribution for n, and three temporal replicates per site (a
common camera trap study design used in SECR analysis), the
program recommends that this design proceed with caution.
SECRDESIGNAPP makes this recommendation based on the
power to detect a trend in population density exceeding 80%
only in cases of a net density decrease of ≥64.1% or a net
increase of ≥94.9%. With all of the other study design criteria
held equal, a similar study would need to deploy 240 camera
stations (nearly 100 more than average) to achieve a design that
meets the app’s recommendations for statistical power. Moving
forward, we strongly recommend future studies conduct these
simulation exercises before following through with a potentially
unsatisfactory field protocol.

Increasing Density Precision
Density precision increased with increasing values of baseline
density and the number of individuals captured. As the former
cannot be controlled by researchers beforehand, the best way
to increase precision from a study design perspective would
seem to be through increasing the number of individuals
captured. This can be done naturally by increasing the
survey area, thus exposing a greater number of individuals
to sampling. However, increasing survey area is not always
feasible in many typical research situations. Investigators are
hindered by the amount of resources available to them,
and any one study’s scale can be limited by labor, money,
time, political boundaries, and other factors. In order to
increase the efficacy of SECR density estimation through
camera trapping, especially in the context of long-term
population monitoring, researchers must adopt new techniques
and technologies [e.g., automatic detection through artificial
intelligence (Norouzzadeh et al., 2018), online data entry and
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verification platforms (eMammal:: https://emammal.si.edu/)] to
increase the scale of their investigations and improve the
precision of density estimates.

Future Research Using Camera Traps and
SECR Analysis
There are exciting avenues through which research using SECR
analysis and camera traps could be expanded. The incorporation
of community science (aka citizen science) into SECR camera
trapping studies can increase the scale of their investigations.
Community science has expanded recently due to changing views
of science and because of its scientific and societal benefits
(Silverton, 2009; Adler et al., 2020). One of the hallmarks of
community science is its ability to increase the spatial scale
and temporal extent of investigations (Devictor et al., 2010;
Abolafya et al., 2013; Jarvis et al., 2015; Adler et al., 2020).
Specifically, community science has been shown to be effective
in gathering baseline population and habitat usage data tracked
through both space and time (Conrad and Hilchey, 2011;
Sullivan et al., 2017; Horns et al., 2018; Neate-Clegg et al.,
2020). Community science allows for the effective tracking
of species distributions, as it allows projects to cover much
greater areas than through more traditional methods (Gallo and
Waitt, 2011; Hawthorne et al., 2015; Chandler et al., 2017).
With camera traps, volunteers can setup cameras, maintain
them in the field, and even upload and tag images to an
online database. Furthermore, employing volunteers to help
setup camera traps may even be a way for researchers to
access land not previously available (e.g., private land, farmland,
etc.). Finally, online camera trap databases (e.g. eMammal:
https://emammal.si.edu/; Smithsonian Wild: http://siwild.si.edu;
Wildlife Insights: https://www.wildlifeinsights.org/home; and the
Urban Wildlife Information Network: https://urbanwildlifeinfo.
org) make it possible for online data entry, data upload, project
management, and expert review, each of which is critical to the
operation and maintenance of a community science project, and
these above-mentioned programs have already initiated multiple
successful citizen science initiatives.

It is important, however, to note the potential drawbacks
and limitations of citizen science camera trapping projects. A
consistent and critical challenge to citizen science is maintaining
data quality and consistency (Hecker et al., 2018). For example,
qualitative analysis of citizen science data quality showed that
only 62% of citizen science data meets scientifically accepted
precision parameter thresholds (Aceves-Bueno et al., 2017; Adler
et al., 2020). Citizen science data quality can be improved with
close communication between project leads and volunteers and
rigorous citizen science training, but this requires both extensive
time and resources (Dickinson et al., 2010; Vann-Sander et al.,
2016; Alexandrino et al., 2019). Additionally, collaboration with
citizen science projects and online programs such as eMammal
(https://emammal.si.edu/) make it possible for experts to review
each citizen science classification. Another potential limitation
of any citizen science camera trapping project is the ability
to retain volunteers (Sauermann and Franzoni, 2015; Seymour
and Haklay, 2017; Alexandrino et al., 2019). In one study,

Wald et al. (2016) found that only a few participants complete
large portions of work. The authors suggest that providing
project-based benefits to return participants, sharing data with
participants, and consistent communication between scientists
and participants could address these low levels of retention.
Furthermore, scientists must understand and empathize with the
motivations of both new and return participants, especially with
how these motivations change as volunteers progress through the
project (Rotman et al., 2012).

Finally, modifications to spatially explicit density estimation
are worth noting. Spatially explicit mark-resight models (Kelly
et al., 2008; McClintock et al., 2009, 2012) incorporate
information about both marked and unmarked individuals
to estimate density. By using both marked and unmarked
animals in density analysis, they have the ability to potentially
expand the number of species that can be studied using
camera traps by including species where not all individuals
are identifiable. Gilbert et al. (2020) recently reviewed the
methods for estimating the abundance of unmarked animals
using camera traps, as well as their potential shortcomings,
assumptions, and recommended uses. Although the authors
show that mark-resight methods are not consistently used
to estimate abundance or density of unmarked animals
(appearing in < 5% of included studies) throughout the
camera trap community and that relative abundance across
study covariates remains the most common methodology,
the method holds promise and is becoming increasingly
more common.

CONCLUSIONS

Camera traps have been used for population monitoring for
decades. Spatially-explicit mark recapture (SECR) methods make
it possible to accurately estimate density over a given area,
eliminating the need for ad hoc approaches like estimating
individual movement through the maximum distance traveled
across camera stations or applying an arbitrary buffer around
the camera trap array. Currently, SECR analyses have focused on
large-ranging, rare and elusive, and easily identifiable carnivores,
specifically felids. These analyses have answered previously
unknown questions about how these species are distributed
across particular landscapes. However, a bias toward spotted,
striped, or individually-identifiable animals has left much of
the world’s species out of the conversation when it comes to
camera trap SECR benchmark studies. Furthermore, this review
shows that some density estimates may not be precise enough
to monitor population trends over space and time, and we
offer some recommendations for increasing density precision in
future studies. Conducting power analysis or simulations using
readily available software should help future researchers and
managers design SECR studies that meet their desired ability
to monitor trends through space and time. We recommend
that studies focus on increasing the total number of individuals
monitored throughout a study area, which can be done by
increasing the area of the camera trap array. As many studies
lack the resources or labor to accomplish such an increase in
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effort, we recommend that researchers think about ways to
incorporate new technology, such as machine-learning, web-
based data entry and deployment management, and citizen
science into their study design, while recognizing that the latter
comes with associated drawbacks and limitations. Lastly, SECR
model development to include species that have only a subset
of individuals available for individual identification (often called
mark-resight models), which incorporate information from both
these individuals and individuals captured without individual
markings, hold promise in extending the process of explicit
density estimation through camera trapping to species not
individually identifiable.

SECR density estimation through camera trapping is a
powerful tool in the conservation biologist’s or land manager’s
toolbox. If executed effectively, these models can be used
to monitor populations of rare, elusive, large-ranging, and
individually recognizable species, making it one of the best ways
to benchmark the current standing of species with recognizable
individual markings.
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